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Transition between two oscillation modes

R. López-Ruiz and Y. Pomeau
Laboratoire de Physique Statistique, Ecole Normale Supe´rieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 13 May 1996!

A model for the symmetric coupling of two self-oscillators is presented. The nonlinearities cause the system
to vibrate in two modes of different symmetries. The transition between these two regimes of oscillation can
occur by two different scenarios. This might model the release of vortices behind circular cylinders with a
possible transition from a symmetric to an antisymmetric Be´nard–von Karman vortex street.
@S1063-651X~97!51002-6#

PACS number~s!: 47.20.2k, 05.45.1b, 05.90.1m
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Nowadays the understanding of self-oscillators is fai
complete thanks to the theory of bifurcation and of norm
forms. A familiar model for this is the van der Pol syste
@1#, which displays a wide range of behavior, from weak
nonlinear to strongly nonlinear relaxation oscillations, ma
ing it a good model for many practical situations. Howev
there are physical situations characterized by spontan
self-oscillations with certain basic features that are abs
from the ‘‘generic’’ van der Pol system. Take for instan
the Bénard–von Karman vortex street in the wake of a c
inder. Its phenomenology is approximately as follows@2–4#:
the velocity field remains two-dimensional for Reynol
number~Re! less than 160~creeping flow for Re,4; recir-
culation zone with two steady symmetric eddies attached
hind the cylinder for 4,Re,45; instability at Re.45 at
which these eddies are released alternatively to form
double row of opposite sign vortices, the Be´nard–von Kar-
man vortex street! and for Re.160 three-dimensional an
irregular fluctuations are superimposed on the dominant
riodic vortex shedding.

It is tempting to say that the periodic vortex sheddi
provides a classical example of Poincare´-Andronov bifurca-
tion to a limit cycle. However, one fundamental ingredie
would be missing if one insisted in describing these osci
tions by the van der Pol equation: no equivalent of the sy
metry of the system would be present in the mathemat
description. That is, this mathematical picture would ma
no difference between a symmetric and an antisymme
release of vortices, both would be fairly described by
same van der Pol equation, although they are clearly ph
cally different.

We propose here to implement the major symmetries
the Bénard–von Karman oscillations by assuming that th
result from the symmetric coupling of two identical oscill
tors, each one responsible for the periodic release of vort
on one side of the cylinder. The interest of this approach
that it shows two possible stable oscillating states: one s
metric, one antisymmetric, depending on the value of so
coupling parameter. By varying continuously the coupling
is possible to monitor the transition between these two
gimes, something that is beyond an approach using a si
van der Pol equation.

A dynamical model for representing these properties
presented and some information about the transitions
tween the two oscillation modes is obtained. We make
551063-651X/97/55~4!/3820~4!/$10.00
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attempt to relate our model to the fluid mechanical equatio
The symmetry properties of the system are used as a b
ingredient, as well as the fact that it operates in a stable w
in an oscillating mode.

Let us assume that there is an oscillator~the ‘‘vortex’’
emitter! on each side~side1,side2! of the cylinder@5# and let
(x1 ,x2) be their amplitudes of oscillation. If„x1(t),x2(t)… is
a possible dynamics,„x2(t),x1(t)… is also realizable by sym
metry. If a vortex is emitted from sidei wheneverxi(t)
reaches a maximum, then the symmetrical and antisymm
cal vortex streets~Fig. 1! appear as two oscillation mode
one with the two oscillators in phase and the other one w
the two oscillators out of phase. The symmetric modeQ1
verifiesx1(t)5x2(t) and the antisymmetric oneQ2 verifies
x1(t)5x2(t1T/2) with T the period.

The simplest model representing these properties is a
tem of two coupled harmonic oscillators with a small co
pling b:

ẍ11x11bx250,
~1!

ẍ21x21bx150.

The normal modes verifyQ̈i1@12(21)ib#Q i50 (i
51,2), with Q15x11x2 and Q25x12x2 each one with
frequenciesv1511b and v2512b. But this model is
Hamiltonian and it is not useful to describe self-oscillatio
~i.e., oscillations resulting from balance between energy

FIG. 1. A graphical representation of the two oscillation mod
~a! the symmetric vortex streetQ1 and ~b! the antisymmetric one
Q2.
R3820 © 1997 The American Physical Society
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55 R3821TRANSITION BETWEEN TWO OSCILLATION MODES
put and dissipation!. It does not present any Poincar´-
Andronov bifurcation, although it was shown experimenta
that the vortex shedding behind a cylinder results from t
type of bifurcation@2#. To remedy this, we can introduce, a
in the van der Pol system, a nontrivial damping termẋ f (x)
in Eqs. ~1!. The van der Pol oscillator of equationẍ2e(1
2x2) ẋ1x50 is probably the simplest example of a syste
with one stable limit cycle: a fixed point at the origin and
unstable closed orbit fore,0 and an attractive cycle fo
e.0. A natural extension of the van der Pol system to
representation of two symmetric coupled oscillators is

ẍ12e@12~x1
21x2

2!# ẋ11x11bx250,
~2!

ẍ22e@12~x1
21x2

2!# ẋ21x21bx150.

The small displacements nearx15x25 ẋ15 ẋ250 are
damped to zero whene,0 and give sustained oscillation
whene.0. The birth of a stable limit cycle is then governe
by the parametere and our interest rests in this regime~e
.0!. Other properties of Eqs.~2! are as follows.

~i! If b50, Eqs.~2! presentO(2) symmetry. If the com-
plex variablez5x11 ix2 is defined, system~2! becomez̈
2e(12uzu2) ż1z50, which has the symmetriesz→eifz
and z→ z̄. A stable solution isz5eifr (t) with f constant
andr (t) the solution ofr̈2e(12r 2) ṙ1r50. Its representa-
tion point is a straight line through the origin in th
(x1 ,x2) plane at constant anglef, r (t) oscillating along this
line. The periodic solutionz5e6 i t is unstable.

~ii ! If bÞ0 the phase symmetry is destroyed, althoug
Z(2) symmetryz→6 i z̄ remains. Equations~2! become

z̈2e~12uzu2!ż1z1 ib z̄50. ~3!

Now there are two oscillating solutions: the symmetric mo
Q1[(x15x2) given byz15eip/4r 1(t) and the antisymmet
ric modeQ2[(x152x2) given by z25e2 ip/4r 2(t), where
r 1(t) and r 2(t) verify r̈ i2e(12r i

2) ṙ i1@12(21)ib#r i50
( i51,2).

This system presents stable oscillations whenubu,1 and
diverges to infinity whenubu.1 ~except for initial conditions
r5 ṙ50). One finds a parameter valuebe.0 such that if
0,b,be , thenQ1 is stable andQ2 unstable, and if2be
,b,0, Q1 is unstable andQ2 stable. Also, ifbe,ubu,1,
the two modesQ1 andQ2 are linearly stable. Let us remar
that this simple model brings all the information we are loo
ing for. The range of parameterse.0 would modelize the
situations of stable limit cycle oscillations observed expe
mentally for Re.Rec , where Rec is the Reynolds number a
the onset of vortex shedding. The parameterb would repre-
sent for instance the aspect ratio in the experiments of Le
and collaborators@6#.

In model equation~2! the transition fromQ1 to Q2 stable
oscillation occurs atb50. In this case the coupling is los
and the system becomes degenerate at transition~the phase
difference between the two oscillators is arbitrary! presenting
an infinity of stable oscillating states. In order to remove t
degeneracy, we need to have more than one coupling pa
eter. This means that the dimension of parameter space
transition between two modes of oscillation should
greater than 1: the unfolding of this transition should be c
trolled by two parameters at least. Thus, a more general
t
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‘‘robust’’ scheme of transition from modeQ1 to modeQ2 ,
and vice versa, is achieved by introducing another ph
symmetry breaking term~proportional tog! in the dissipative
force of Eqs.~2!:

ẍ12e@12x1
22~11g!x2

2# ẋ11x11bx250,
~4!

ẍ22e@12x2
22~11g!x1

2# ẋ21x21bx150,

where g and b are the coupling constants. Symmetri
(x1 ,x2)↔(x2 ,x1) and (x1 ,x2 ,b)↔(x2 ,2x1 ,2b) are pre-
served.

We have numerically studied the solutions of this syst
in two different regimes and found the following results f
g andb near zero.

~a! Whenubu!ugu there are four oscillatory states: the pu
symmetric modeQ1[(x15x2), the pure antisymmetric
mode Q2[(x152x2), and two new mixed modesQ12
[(x1 ,x2) andQ21[(x2 ,x1) intermediate betweenQ1 and
Q2 . If g.0, the mixed modes are stable and the pure mo
unstable. Ifg,0, the mixed modes are unstable and the p
modes stable.

~b! When ubu@ugu, Eqs.~4! tend to Eqs.~2! ~the perturba-
tion introduced byg can be neglected in front ofb!, the
mixed modesQ12 and Q21 collide and disappear, and th
pure modeQ1 andQ2 remain.

Let us explain in more detail the two different scenari
~Fig. 2! that can be found for the transition between the p
modesQ1 andQ2 wheng is fixed andb is varied~e is kept
constant and of order 1, but the results are not sensitive t
specific value!.

Scenario I,g,0 [Fig. 2(a)]. (I1) b,2c(e)ugu @c(e)
positive constant, depending one and of order 1 fore of
order 1#: Q1 is unstable andQ2 stable. No mixed modes
(I2) 2c(e)ugu,b,c(e)ugu: the two unstable mixed mode
Q12 andQ21 grow fromQ1 for b52c~e!ugu. In this regime
the two pure modes are stable. Depending on initial con
tions the system oscillates in the symmetric or in the a
symmetric mode. Whenb→c(e)ugu the two mixed modes
approachQ2 and collide with it forb5c(e)ugu makingQ2
linearly unstable. It transfers the stability fromQ2 to Q1. ~I3!
b.c(e)ugu: Q1 is stable andQ2 unstable. No mixed modes
Summarizing: there is a range of parameters I2 whereQ1 and
Q2 are both stable, and each mode~Q1 or Q2! loses its sta-
bility by a supercritical bifurcation on the edges of I2.

Scenario II,g.0 [Fig. 2(b)#. (II1) b,2c(e)ugu: Q1 is
unstable andQ2 stable. No mixed modes. (II2) 2c(e)ugu
,b,c(e)ugu: the two mixed modesQ12 andQ21 bifurcate
from Q2 for b52c(e)ugu. These are stable~which makes
the difference with scenario I!. In this II2 regime the two
pure modes are unstable and the system will decay in on
the two mixed modes according to the initial condition
Whenb→c(e)ugu the mixed modes approachQ1 and col-
lide with it for b5c(e)ugu. It transfers the stability from the
mixed modes toQ1 . ~II 3) b.c(e)ugu. Q1 is stable and
Q2 unstable. No mixed modes. Summarizing: there is
range of parameters II2 where the two mixed modes ar
stable, and collide withQ1 or Q2 on the edge of II2 to
exchange stability.

A derivation of the dynamics of Eqs.~4! can be obtained
in the formalism of a slow phase dynamics@7#. @A different
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calculation can be found in Ref.@8#, where two nonlinear
oscillators with diffusive coupling, not the one we consid
are studied in the vicinity of a Hopf~Poincare´-Andronov!
bifurcation.# When b5g50, the set of Eqs.~4! presents
phase symmetry~f! and temporal translation symmetry~c!,

FIG. 2. Nonlinear transition between the two oscillation mod
(Q1,Q2!: ~a! in scenario I ~g,0! the two intermediary mixed
modes,Q12 and Q21, are unstable and~b! in scenario II ~g.0!
these mixed modes are stable.~c! Another representation of sce
narios I and II~inspired from figure 3 in Ref.@8#!.
,

and whenb or g are different from zero the phase symmet
is broken. For smallb or g ~of the same order of magnitude!
the general solution of Eqs.~4! can be written

x15r 0~ t1c!cosf1dx1 ,

x25r 0~ t1c!sinf1dx2 ,

wherer 0(t) is the periodic nonzero solution of the van d
Pol equation: r̈ 02e(12r 0

2) ṙ 01r 050, c and f follow a
slow dynamics~ċ/c,ḟ/f!ṙ 0 /r 0), and dx1 , dx2 , ċ and ḟ
are small and of order~g,b! Linearizing Eqs.~4! to order
~g,b! we obtain a set of coupled equations to be solved
dx1 anddx2 . These equations are written in matrix notatio
to make their structure more transparent:

LS dx1
dx2

D 5S f ~r 0!sinf g~r 0!cosf

2 f ~r 0!cosf g~r 0!sinf
D S ḟ

ċ
D

2r 0Fb1
g

2
h~r 0 ,f!G S sinfcosf D , ~5!

where

L5SFt 0

0 Ft
D 1h~r 0 ,f!S cotf 1

1 tanf D ,
Ft5] tt2e~12r 0

2!] t11,

f ~r 0!52ṙ 02e~12r 0
2!r 0 ,

g~r 0!52@2r̈ 02e~12r 0
2! ṙ 0#,

h~r 0 ,f!5er 0ṙ 0sin~2f!.

The relevant solution of Eq.~5! is made of periodic functions
of time, with the same periodT asr 0(t). This excludes func-
tions with a secular growth and leads to a solvability con
tion that will ultimately become an equation of evolution f
f(t). To write this solvability condition, one needs to defin
first an inner product of functions of time with periodT as
^uWusW &[*0

T(u1s11u2s2)dt @uW 5(u1 ,u2) is written as a two-
component vector#. One notices now that the linear operat
L has a nonempty kernel:

LvW 50W⇒vW a5r 0S sinf

2cosf D , vW b5 ṙ 0S cosfsinf D .
Because of this nonempty kernel, Eq.~5! has no solution in
general that is periodic with periodT. To have such a solu
tion, the right-hand sidewW of this equation must be orthogo
nal to the kernel of the adjoint operatorL1, made of two
functions,xW i , (i5a,b), of t that are solution of the forma
equationL1xW 50. The solvability condition is then that th
two inner productŝ xW i uwW & ( i5a,b) are zero. The operato
L1 can be written explicitly as

L15SFt1 0

0 Ft1
D 1h~r 0 ,f!S cotf 1

1 tanf D ,
whereFt15] tt1e] t(12r 0

2)11. Since the two left vectors
xW a,b , once multiplied with the inner product,^u&, with the left

s
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55 R3823TRANSITION BETWEEN TWO OSCILLATION MODES
side of Eq.~5! give zero, the same product with the right si
of Eq. ~5! should give zero as well. This gives two couple
equations forḟ and ċ :

S ha1 ha2

hb1 hb2
D S ḟ

ċ
D 5bSma

mb
D 1gS nanbD , ~6!

wherehi1 , hi2 , mi , ni ( i5a,b) are functions ofe andf
after the time integration coming from the scalar product

hi15E
0

T

f ~r 0!@sinfx i12cosfx i2#dt,

hi25E
0

T

g~r 0!@cosfx i11sinfx i2#dt,

mi5E
0

T

r 0@sinfx i11cosfx i2#dt,

ni5
1

2E0
T

r 0h~r 0 ,f!@sinfx i11cosfx i2#dt.

Thef dependence of the vectors in the kernel ofL1 can be
factored out by noticing that these vectors can have the
lowing f dependence:

xW a5ha~ t !S 2sinf

cosf D , xW b5hb~ t !S cosfsinf D .
From this the two functionsha,b(t) are the nontrivial
~5nonzero! solutions of periodT of the two linear homoge-
neous equations:

Ft1@ha~ t !#50⇒@] tt1e] t~12r 0
2!11#ha~ t !50,

@Ft12e~12r 0
2!] t#@hb~ t !#

50⇒@] tt1e~12r 0
2!] t11#hb~ t !50.

Then the equation forḟ is simplified to

ka~e!ḟ5 l a~e!cos~2f!b1sa~e!sin~4f!g, ~7!

whereka , l a , andsa are functions ofe only that are propor-
tional to various scalar product of functions on E
~6! with ha(t). Thus ka(e)52*0

Tf (r 0)ha(t)dt; l a(e)
5*0

Tr 0ha,b(t)dt; andsa(e)5e/4 *0
Tr 0

2ṙ 0ha,b(t)dt.
Equation~7! presents, asb andg vary, the same bifurca

tions as the one found numerically for the original set
,

,

l-

.

f

equations ~4!. To show this, let us defineb85
b@ l a(e)/ka(e)# and g852g@sa(e)/ka(e)#, which will be
considered now as the bifurcation parameters@the quantities
l a(e)/ka(e) and sa(e)/ka(e) are constants of order 1 at
fixed finite value ofe, and so can be eliminated by scaling#.
The fixed points of Eq.~7! are roots~in f! of

b8cos~2f!1 ~g8/2!sin~4f!50 ~8!

or of cos(2f)50 or b81g8sin(2f)50.
If ub8u.ug8u, this corresponds to scenario I1,3 and II1,3. The

only steady states are at the zeros of cos(2f), which are at
f5p/4 andf52p/4, with one stable and the other unstab
depending of the sign ofb8 ~and consequently ofb! in agree-
ment with what was found numerically. Ifub8u,ug8u, they are
two more fixed points, which are12sin

21(2b8/g8) and p/2
2 1

2sin
21(2b8/g). They correspond to the mixed modes an

asb8 goes for instance from2g8 to g8 ~if g8.0!, one finds
the same bifurcation structure as found for the original E
~4!, as explained formerly under the heading ‘‘Scenario II’’
~Fig. 2!.

In this Rapid Communication, we have presented a sim
model for systems made of two symmetric coupled se
oscillators@9#. This might be a theory for one of the mo
studied instabilities in real fluid mechanics, the periodic
lease of vortices in the wake of cylinders, a phenomen
studied experimentally and theoretically long ago by Be´nard
and von Karman@10,11# and their collaborators. The conne
tion of the present work with the Be´nard–von Karman phe
nomenon could be as follows. Our idea is that the wake
created by two symmetrically coupled self-oscillators, o
on each side of the cylinder. We have shown that, depend
on the coupling, these two systems may either oscillate
phase or out of phase~as in the Be´nard–von Karman wake in
a normal viscous fluid!. Moreover, the transition from one o
these two states to the other is realized by two different s
narios depending of the parameters. This might describe
cent experiments by Le Gal and collaborators@6#, who ob-
serve this transition when the flow around the cylinder
more and more constrained by plates perpendicular to
axis of this cylinder.
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oscillators. R. L-R. also thanks S. Rica for useful discussi
and the European Community for a research grant.
ce

@1# B. van der Pol, Philos. Mag.2, 978 ~1926!.
@2# C. Mathiset al. J. Phys. Lett.45, L483 ~1984!.
@3# B.R. Noacket al. J. Fluid Mech.227, 293 ~1991!.
@4# T. Leweke, Ph.D. thesis, Universite´ de Provence, Marseille

France~1994!.
@5# Y. Pomeau, Chaos, Solitons & Fractals5, 1755~1995!.
@6# P. Le Gal~private communication!; I. Peschard, Ph.D. thesis
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